首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1214篇
  免费   68篇
  国内免费   131篇
化学   554篇
晶体学   3篇
力学   76篇
综合类   3篇
数学   179篇
物理学   598篇
  2024年   4篇
  2023年   39篇
  2022年   16篇
  2021年   13篇
  2020年   12篇
  2019年   22篇
  2018年   18篇
  2017年   30篇
  2016年   26篇
  2015年   36篇
  2014年   58篇
  2013年   78篇
  2012年   64篇
  2011年   81篇
  2010年   69篇
  2009年   89篇
  2008年   78篇
  2007年   105篇
  2006年   87篇
  2005年   73篇
  2004年   79篇
  2003年   50篇
  2002年   32篇
  2001年   34篇
  2000年   28篇
  1999年   31篇
  1998年   23篇
  1997年   16篇
  1996年   20篇
  1995年   14篇
  1994年   14篇
  1993年   11篇
  1992年   9篇
  1991年   8篇
  1990年   4篇
  1989年   5篇
  1988年   8篇
  1987年   6篇
  1986年   8篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
  1981年   4篇
  1980年   1篇
  1978年   1篇
排序方式: 共有1413条查询结果,搜索用时 15 毫秒
1.
2.
We study the response of nonlinear wave systems in bounded domains at or near resonance. There are typically two qualitatively distinct types of response which may be observed relating to whether or not higher harmonics are themselves resonant. We introduce a variety of nonlinear model problems at or near resonance and study the subsequent response. We explain how the features of this problem such as the form of nonlinearity, boundary conditions, and the nature of spectrum play a fundamental role in the qualitative nature of the response. Numerical simulations are carried out to provide further explanation and comparison with analytic approximations. The results of this study provide a better understanding of the impact and interplay between nonlinear and boundary effects and thus in turn will contribute to providing new insights into various physically motivated problems in acoustics and other settings.  相似文献   
3.
S. D. Campos 《中国物理C(英文版)》2020,44(10):103103-103103-10
This work presents the subtraction procedure and the Regge cut in the logarithmic Regge pole approach. The subtraction mechanism leads to the same asymptotic behavior as previously obtained in the non-subtraction case. The Regge cut, in contrast, introduces a clear role to the non-leading contributions for the asymptotic behavior of the total cross-section. From these results, some simple parameterization is introduced to fit the experimental data for the proton-proton and antiproton-proton total cross-section above some minimum value up to the cosmic-ray. The fit parameters obtained are used to present predictions for the \begin{document}$ \rho(s)$\end{document} -parameter as well as to the elastic slope \begin{document}$ B(s)$\end{document} at high energies.  相似文献   
4.
In this paper, we prove the possibility of optimization of some free parameters of Meixner-like discrete-time linear filters using orthonormal basis functions (OBF) in an analytical way. Since the z-transform of the Meixner filters is impossible and it is possible for Meixner-like filters, we are motivated to study closely the optimization of the Meixner-like's pole. As a result, the differential equation associated with Meixner-like filters has been developed. On the other hand, the effective width of the energy distribution in the transformation domain is a function of the free parameter (Meixner-like pole) and simple signal measurements and can be calculated by the second-order moment. Analytic minimization of the second-order moment gives an optimal value of the free parameter. To validate the effectiveness of the proposed approach, numerical results are used to determine the free parameters.  相似文献   
5.
In this paper we establish various existence, nonexistence and multiplicity results for fully nonlinear Dirichlet problems associated to nonlocal Hamilton–Jacobi equations. This study is accomplished by a careful analysis of the principal eigenvalues of the elliptic operator. Resonance phenomena and anti maximum principles are also established.  相似文献   
6.
A highly efficient black TiO2-Ag photocatalytic nanocomposite, active under both UV and visible light illumination, was synthesized by decorating the surface of 25 nm TiO2 particles with Ag nanoparticles. The material was obtained via a rapid, one-pot, simple (surfactant and complexing agent free) chemical reduction method using silver nitrate and formaldehyde as a metal salt and reducing agent, respectively. The nanocomposite shows an increase of over 800% in the rate of photocatalytic methylene blue dye degradation, compared to commercial unmodified TiO2, under UV-VIS illumination. Unlike pure TiO2, the nanocomposite exhibits visible light activation, with a corresponding drop in optical reflectance from 100% to less than 10%. The photocatalytic properties were shown to be strongly enhanced by post-reduction annealing heat treatments in air, which were observed to decrease, rather than coarsen, silver particle size, and increase particle distribution. This, accompanied by a variation in the silver surface oxidation states, appear to dramatically affect the photocatalytic efficiency under both UV and visible light. This highly active photocatalyst could have wide ranging applications in water and air pollution remediation and solar fuel production.  相似文献   
7.
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials are considered a class of organic materials with exceptional electronic and optical properties, which make them promising for the applications in organic light-emitting diodes (OLEDs). In this study, we improved, synthesized, and characterized a multiple-resonance type emitter based on the assembly of MR-building blocks (MR-BBs). By optimizing the geometric arrangement of MR-BBs, we were able to generate narrowband emission in the longer wavelength region and shorten the delayed excited-state lifetime, resulting in improved emission efficiency compared to the parent molecule. Our proof-of-concept molecule, m-DBCz, exhibited narrowband yellowish-green TADF emission with a full width at half-maximum of 32 nm and a small singlet-triplet energy gap of 0.04 eV. The OLED developed using m-DBCz as the emitter demonstrated electroluminescence at 548 nm and achieved a high external quantum efficiency (EQE) of 34.9 %. Further optimization of the device resulted in a high external quantum efficiency of 36.3 % and extremely low efficiency roll-off, with EQE values of 30.1 % and 27.7 % obtained even at high luminance levels of 50 000 and 100 000 cd m−2. These results demonstrate the full potential of MR-TADF materials for applications on ultrahigh-luminance OLEDs.  相似文献   
8.
Photocatalysis, particularly plasmon-mediated photocatalysis, offers a green and sustainable approach for direct nitrogen oxidation into nitrate under ambient conditions. However, the unsatisfactory photocatalytic efficiency caused by the limited localized electromagnetic field enhancement and short hot carrier lifetime of traditional plasmonic catalysts is a stumbling block to the large-scale application of plasmon photocatalytic technology. Herein, we design and demonstrate the dual-plasmonic heterojunction (Bi/CsxWO3) achieves efficient and selective photocatalytic N2 oxidation. The yield of NO3 over Bi/CsxWO3 (694.32 μg g−1 h−1) are 2.4 times that over CsxWO3 (292.12 μg g−1 h−1) under full-spectrum irradiation. The surface dual-plasmon resonance coupling effect generates a surge of localized electromagnetic field intensity to boost the formation efficiency and delay the self-thermalization of energetic hot carriers. Ultimately, electrons participate in the formation of ⋅O2, while holes involve in the generation of ⋅OH and the activation of N2. The synergistic effect of multiple reactive oxygen species drives the direct photosynthesis of NO3, which achieves the overall-utilization of photoexcited electrons and holes in photocatalytic reaction. The concept that the dual-plasmon resonance coupling effect facilitates the directional overall-utilization of photoexcited carriers will pave a new way for the rational design of efficient photocatalytic systems.  相似文献   
9.
Nanoscience research aims to produce nanoparticles without adverse effects for medical applications. The pulsed laser ablation (PLA) technique was utilized in this study to synthesize gold nanoparticles (AuNPs) using bovine serum albumin (BSA) in simulated body fluid (SBF) at the fundamental wavelength of the Nd: YAG laser (1064 nm). BSA acted as a stabilizer, reducing and capping agent to produce spherically shaped AuNPs (diameter 3–10 nm). The successful synthesis of AuNPs was confirmed through color changes and UV–vis spectroscopy. The agglomeration and precipitation of AuNPs are attributed to the presence of BSA in the solution, and electrostatic repulsion interactions between BSA and Au nanoclusters. The effect of salt concentration of SBF on BSA stability as well as the interaction of BSA conjugated AuNPs to form complexes was studied using molecular dynamic simulations. Our results show that the stability of AuNPs-BSA conjugates increase with the salt concentration of BSA. Moreover, the synthesized AuNPs exhibit low toxicity and high biocompatibility, supporting their application in drug delivery. Investigation of the cytotoxic effect of the synthesized AuNPs show that normal fibroblast cells (L929) remain intact after treatment whereas a dose-dependent inhibition effect on the growth of cervix cancer cells (HeLa) is observed. In general, this study presents an effective, environmentally-friendly, and facile approach to the synthesis of multifunctional AuNPs using the PLA technique, as a promising efficacious therapeutic treatment of cervical cancer.  相似文献   
10.
Plasmon-enhanced electrochemiluminescence (ECL) at the single-nanoparticle (NP) level was investigated by ECL microscopy. The Au NPs were assembled into an ordered array, providing a high-throughput platform that can easily locate each NP in sequential characterizations. A strong dependence of ECL intensity on Au NP configurations was observed. We demonstrate for the first time that at the single-particle level, the ECL of Ru(bpy)32+-TPrA was majorly quenched by small Au NPs (<40 nm), while enhanced by large Au ones (>80 nm) due to the localized surface plasmon resonance (LSPR). Notably, the ECL intensity was further increased by the coupling effect of neighboring Au NPs. Finite Difference Time Domain (FDTD) simulations conformed well with the experimental results. This plasmon enhanced ECL microscopy for arrayed single NPs provides a reliable tool for screening electrocatalytic activity at a single particle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号